Practice 3: Planning and Carrying out Investigations
Planning and carrying out an investigation requires the planning and execution of a sequence of varied skills to figure out a phenomenon or design a solution to a problem. At each stage of this process, students rely on each other and their teacher for the sharing of ideas and resources. Instructional strategies that support students’ feelings of belonging cultivate a safe space for students to work with their peers through this process and to ask for and receive support if they encounter challenges. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging within their science classroom community and within science and engineering communities, they may feel more inclined to engage in planning and carrying out investigations as a practice.
Strategies
Students may have little experience with planning, carrying out, and evaluating investigations and with the specialized equipment needed to investigate particular phenomena or test design solutions. Investigations also contain many steps and therefore many places where students may encounter challenges. Supporting students’ confidence as they engage in these activities will be crucial for them to feel comfortable proceeding from planning to completing an investigation. At the same time, the complexity and safety risks of some investigations could make teachers prone to over-scaffold, which could reduce students’ confidence by diluting the level of challenge and communicating feelings of distrust. It is therefore important for teachers to balance adequate supports with sufficient challenge in order for students to build confidence in this practice.
Strategies
- identifying multiple variables, such as independent and dependent variables and controls;
- selecting tools needed for data collection;
- determining how measurements will be taken and logged; and,
- deciding how many data points are sufficient for supporting a claim; provide time for students to reflect on the process and their progress on achieving each mini-goal) so they can focus on one part at a time and provide informational feedback on how their plans are aligning with the objective for the investigation. As students gain competence in planning parts of an investigation, give them larger chunks at a time to plan.
Supporting a learning orientation helps to place the emphasis on the goal of an investigation (i.e., What are we trying to figure out?), rather than casting it as merely a set of steps to complete or a way to learn a science fact. When planning investigations, an emphasis on the goal of the investigation supports students in making an investigation plan that will best achieve that goal. Framing a prediction as a best guess for right now based on available evidence and/or prior learning, and emphasizing that we update our understanding of a phenomenon or which design solution best meets the criteria and constraints of a problem as we gather more evidence are important strategies to help students students engage in making predictions as part of a learning process, rather than worrying about how their predictions will be judged by their classmates. Especially for students who do not have much experience planning and carrying out investigations, it is common to make errors during investigations and/or to obtain unexpected results. With a learning orientation, students will view those errors as a part of their own learning, as well as part of the process of doing science.
Strategies
- Is this phenomenon something you could observe occurring naturally or should you do something in the classroom to explore it (i.e., a controlled experiment)?
- What evidence would you need to answer your question?
- What equipment do you need to do this?
- How will you know if you have been successful?
- For observational investigations:
- What would you need to observe to answer your question?
- For a controlled experiment:
- Which variables will be treated as the outcomes of the investigation?
- How can you measure what you think is important?
- Which conditions would you vary to see if they have any effect on the outcome variable?
- What are all the other variables or conditions that should be held constant during the investigation?
The goal of an investigation is to “figure something out.” Authentic investigative experiences require sufficient student agency to make sense of phenomena or design solutions to problems, ask new questions, and explore ideas of interest; and provide sufficient opportunities for cognitive autonomy so that students are engaged in the “figuring out.” Creating these conditions could take the form of supporting student ownership of the investigation’s purpose and next steps by encouraging students to generate ideas or questions about a phenomenon or design problem to drive the investigation. Developing the skills to plan investigations requires student autonomy to design procedures to accomplish a certain objective. Even when the investigation is a little more pre-determined because of students’ age, skill level, or safety concerns, autonomy can be supported by prompting students to think through the rationale for the investigation procedures. The safety risks of some investigations may mean that teachers must dictate specific constraints on what is possible in the lab, limiting full student control over how to conduct an investigation, but it is important to find opportunities to support other types of student autonomy in these situations.
Strategies
- Big ideas (BI) person. This person pulls the group (occasionally) back to the scientific purpose of the activity. (Often a group will get too wrapped up in the rote execution of the directions)
- Clarifier. This is a role of monitoring everyone’s comprehension about one or two key science terms related to the investigation
- Questioner. This person asks probing questions during the activity, listens for questions posed by other group members, and then revoices the questions to make sure that the whole group takes a moment to hear and entertain questions from everyone
- Skeptic. This person tries to strengthen the group’s work by probing for weaknesses in the developing investigation
- Progress monitor. This person asks others to periodically take the measure of the group’s progress
Planning and carrying out investigations requires students to organize themselves and then use knowledge and skills to make sense of phenomena or solve design problems. When students see relevance in the investigations they are planning and carrying out, they are more likely to put effort into designing and organizing their plan, enacting it, and persisting through the completion of the investigation. Seeing that investigations are useful to and doable by students gives students more reasons to engage in future investigations. This motivation can be especially important for students who identify with communities that have been marginalized or disenfranchised in science, as it empowers them to plan and carry out investigations related to issues they care about [see Motivation as a Tool for Equity].