Practice 6: Constructing Explanations and Designing Solutions
To engage fully in this practice, students should be comfortable with each other and trust that their explanations and solutions will be met by their peers and teachers with an open mind and a lack of judgment of them as a person. Instructional strategies that support students’ feelings of belonging cultivate a safe space for students to iterate upon their explanations and design solutions, engage in argumentation with their peers about alternative explanations, and receive feedback from their peers and teacher. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging within their science classroom community and within science and engineering communities, they may feel more inclined to engage in constructing explanations and designing solutions as a practice.
Strategies
Constructing an explanation requires students to use several skills at once to articulate a claim, select and present supporting evidence and science knowledge, and support the claim using logical reasoning. Some students may be less familiar or comfortable with the norms and practices of constructing explanations. Each student will have a different skill level and comfort level in each of the skills and practices needed to construct an explanation and in being able to use those skills in concert to create an explanation. Providing clear description and expectations of an explanation task and supporting, encouraging, and giving informational feedback to students as they develop these skills helps students to improve in constructing explanations without becoming overly frustrated or thinking they cannot do it. When properly structured and scaffolded, constructing explanations can build students’ confidence by reaffirming and building on what they already know. Similarly, designing solutions requires the iterative application of several skills to arrive at a design solution and benefits from the support, encouragement, and feedback promoted by this design principle.
Strategies
- Some scaffolding examples:
- Here is my claim [... we believe that X is caused by ... or we believe that Y has a role in how Z happens ...]
- If this claim or explanation is true, then when I look at this data, I would expect to see [this particular result or this outcome]
- The reason I’d expect to see this is because I collected data from a situation that is really close to the real thing we are studying, and if we had these outcomes, it would mean that [state a brief causal chain of events—this chain has to be consistent with known science ideas/facts]
- We did see the data pattern we expected. We believe this supports our claim
- If our claim was not true, then I’d expect to see [a different set of patterns in the data or a particular outcome]. But we didn’t see that outcome, so this reasoning also supports our claim
- There may be other explanations for the data, such as ______ or ______, but this does not seem likely because __________
Explicitly teach the qualities of a successful explanation[ ] and how to improve preliminary explanations (e.g., determine whether and describe why the claim, evidence, and/or reasoning are/are not appropriate or valid), then use those same qualities to provide encouraging and informational feedback when students are sharing their own explanations.
A learning orientation helps convey the important understanding that there are multiple ways to construct explanations and design solutions, rather than a single right answer that the teacher is seeking. Exploring different solutions and explanations is a part of the process of learning engineering and science. The goal is for students to be thinking deeply and meaningfully about the how and why of phenomena or problems, rather than merely completing an explanation or design as a classroom task. A learning orientation helps students feel comfortable with sharing explanations and design solutions at an early, potentially underdeveloped phase and helps students to be receptive to feedback geared toward improving their work. When students discuss alternative explanations and design solutions with their peers, a learning orientation supports the perspective that the purpose of discussion is to create better explanations and design solutions.
Strategies
Demonstrate a commitment to the process of sense-making in relation to explanations by:
- Asking open-ended questions and asking students to support their claims with evidence using the language of science (see talk moves)
- Providing tools/scaffolds/structures to support sense-making (e.g., consistent tools for helping students construct and evaluate Claim-Evidence-Reasoning statements across units).[ ] Scaffolds should give general guidance (e.g., “You should explain why the phenomenon occurred”) as well as guidance specific to the explanation they are currently working on (e.g., “You should explain why the salt and ice mixture was able to freeze pure water.”); be detailed enough to help students but not so detailed that students ignore the help; and should fade over time
- Modeling sense-making during more teacher-led demonstrations or presentations of information to develop a greater understanding of a phenomenon (e.g., think-alouds while explaining how a variable or variables relate to another variable or a set of variables, describing how to judge the appropriateness of the claim, evidence, and/or reasoning and how to articulate reasoning for making this judgment)
- Actively communicating the value and scientific authenticity of revising explanations and providing opportunities for students to revise their explanations based on new evidence and more developed understanding of phenomena
- Eliciting students’ ideas of how to define the problem
- Providing ample time for students to engage in an iterative and systematic process of generating, testing, and improving their solutions
Constructing an explanation relies heavily on student-centered learning (i.e., students thinking on their own and engaging in sense-making). Student choice and decision-making are implicated in the act of defining problems and proposing solutions. It is also important that student ideas and thinking drive the explanations and design solutions they are generating and developing over time, whether those explanations and design solutions are occurring during
Strategies
Constructing explanations and designing solutions rely upon students' abilities to make claims and use evidence and reasoning to make sense of phenomena or solve real world problems. It is important for students to formulate explanations and develop solutions related to specific contexts or communities. When classroom lessons and investigations center on interesting and community-related problems or phenomena, students understand that designing solutions to problems and constructing explanations for the causes of phenomena are relevant to their lives. Students are more likely to be cognitively engaged in designing a solution or constructing an explanation for something which has a relevant personal connection (e.g., it is important, interesting, or familiar to them). This motivation can be especially important for students who identify with communities that have been marginalized or disenfranchised in science, as it empowers them to use the science and engineering practice as a tool for understanding phenomena or solving problems related to issues they care about [see Motivation as a Tool for Equity].
Strategies
- How does this help us answer our overarching question: _____________?
- How does this connect to the big ideas we have been learning about in science?
- How can we use our science knowledge to help explain _______________?
- How can we use our model to support or refute these explanations?