NGSS Connections
In this section, we first explain the synergy between this MDP and the eight science and engineering practices, then provide examples, options, and variations of activities and instructional strategies that are aligned with this MDP for each science and engineering practice. However, this does not mean that teachers must use all of these strategies to enact this MDP when promoting the science and engineering practice, nor that these strategies are the only way to do so. We encourage teachers to use their professional discretion to select what will work best for them and their classrooms, and to modify and innovate on these strategies.
To engage fully in this practice, students should be comfortable with each other and trust that their questions will be met by their peers and teachers with an open mind and a lack of judgment of them as a person. Instructional strategies that support students’ feelings of belonging cultivate a safe space in which questions can be posed and critiqued as students figure out phenomena and design solutions to problems. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging within their science classroom community and within science and engineering communities, they may feel more inclined to engage in scientific questioning and in defining problems.
Strategies
To engage fully in this practice, students should be comfortable with each other and trust that their models will be met by their peers and teachers with an open mind and a lack of judgment of them as a person. Instructional strategies that support students’ feelings of belonging cultivate a safe space for students to: (1) develop, use, and evaluate their own models, and (2) use these models to communicate with others as they figure out phenomena and design solutions to problems. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging within their science classroom community and within science and engineering communities, they may feel more inclined to engage in the practices of modeling.
Strategies
Planning and carrying out an investigation requires the planning and execution of a sequence of varied skills to figure out a phenomenon or design a solution to a problem. At each stage of this process, students rely on each other and their teacher for the sharing of ideas and resources. Instructional strategies that support students’ feelings of belonging cultivate a safe space for students to work with their peers through this process and to ask for and receive support if they encounter challenges. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging within their science classroom community and within science and engineering communities, they may feel more inclined to engage in planning and carrying out investigations as a practice.
Strategies
When analyzing and interpreting data in the classroom, students may work in teams, receive feedback from others, and collectively communicate results. Instructional strategies that support students’ feelings of belonging cultivate a safe space for students to hone skills for analyzing and interpreting data in these regards. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging within their science classroom community and within science and engineering communities, they may feel more inclined to engage in the practices of analyzing and interpreting data.
Strategies
- Set up norms for these conversations to establish a sense of belonging/comfort around how to analyze, interpret, and communicate results as evidence.
Applications of mathematics and computational thinking in science and engineering require flexible thinking in a variety of contexts. Instructional strategies that support students’ feelings of belonging cultivate a safe space for students to take chances with potentially unfamiliar types of mathematical or computational thinking across contexts. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging within their science classroom community and within science and engineering communities, they may feel more inclined to engage in using mathematics and computational thinking as a practice.
Strategies
To engage fully in this practice, students should be comfortable with each other and trust that their explanations and solutions will be met by their peers and teachers with an open mind and a lack of judgment of them as a person. Instructional strategies that support students’ feelings of belonging cultivate a safe space for students to iterate upon their explanations and design solutions, engage in argumentation with their peers about alternative explanations, and receive feedback from their peers and teacher. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging within their science classroom community and within science and engineering communities, they may feel more inclined to engage in constructing explanations and designing solutions as a practice.
Strategies
To engage fully in this practice, students should be comfortable with each other and trust that when they engage in argumentation from evidence in their class they are arguing about ideas and not the people expressing those ideas. Instructional strategies that support students’ feelings of belonging cultivate a safe space for students to engage in such productive argumentation when making sense of a phenomenon or solving a problem. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging and understand the process of argumentation used within their science classroom community and within science and engineering communities, they may feel more inclined to engage in argumentation from evidence as a practice.
Strategies
- Be sure sentence frames are visible to students (e.g., “I agree with what [name] said because…”). Whereas discussion norms should be an everyday practice, these sentence frames create a safe space for students to learn from each other how to engage in argumentation through the encouragement of non-judgmental interactions
When students obtain, evaluate, and communicate information, they may do so through a variety of media, formats, and levels of complexity. As a result, different students will encounter challenges with different aspects of obtaining, evaluating, and communicating information. Instructional strategies that support students’ feelings of belonging cultivate a safe space for students to work through those challenges and ask for and receive assistance from their peers and teachers. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging within their science classroom community and within science and engineering communities, they may feel more inclined to engage in obtaining, evaluating, and communicating information as a practice.