Practice 7: Engaging in Argument from Evidence
To engage fully in this practice, students should be comfortable with each other and trust that when they engage in argumentation from evidence in their class they are arguing about ideas and not the people expressing those ideas. Instructional strategies that support students’ feelings of belonging cultivate a safe space for students to engage in such productive argumentation when making sense of a phenomenon or solving a problem. Strategies that support belonging also encourage students to develop a sense of being part of a community of scientists and engineers, which is especially important for students who may not have a well-developed science identity or who may feel alienated from science [see Motivation as a Tool for Equity]. As students begin to feel a greater sense of belonging and understand the process of argumentation used within their science classroom community and within science and engineering communities, they may feel more inclined to engage in argumentation from evidence as a practice.
Strategies
- Be sure sentence frames are visible to students (e.g., “I agree with what [name] said because…”). Whereas discussion norms should be an everyday practice, these sentence frames create a safe space for students to learn from each other how to engage in argumentation through the encouragement of non-judgmental interactions
Some students may lack confidence to engage in argumentation, especially if they feel unsure of their own science and engineering understanding. Teachers can combat this lack of confidence by helping students understand the goals and expectations of argumentation and in supporting students throughout the process of developing and making an argument with guidance and informational feedback. Showing students that strategies can help them compose effective arguments can also help build their confidence in this practice. Finally, careful attention to the specificity of the informational feedback students receive when competing arguments are considered and evaluated is critical to supporting students’ confidence in argumentation.
Strategies
- Create tools to support common tasks (e.g., graphic organizers for Claim-Evidence-Reasoning) and make them consistently available to students. This can help make challenging tasks more accessible
- Use board space or anchor charts to ensure that the central question is clear and to record and sort points of agreement and disagreement as the students move toward reconciliation in their argument
- Provide options for level of challenge so students can select the level that suits them. For example, allow students to decide whether or not they need a Claim-Evidence-Reasoning graphic organizer later in the school year
The purpose of argumentation in science and engineering is to come to consensus on explanations, models, data analysis, interpretations, and other artifacts of engaging in science and engineering practices. When students are the authors of these artifacts, they can perceive arguments about their work and ideas as a critique of them personally or a judgment on their intelligence, especially if they worry about confirming negative stereotypes that others may hold about their scientific ability [see Motivation as a Tool for Equity]. A learning orientation helps students see that argumentation is focused on reaching consensus about ideas (i.e., reaching a shared understanding of a phenomenon or design problem) rather than judging an individual or the individual’s ideas. Argumentation requires that students listen to each others’ evidence and ideas, which could lead them to reflect on and revise their own ideas or choose other supporting evidence. Having a learning orientation sets up students to be open to adjusting their own explanations/models/interpretations/designs based on others’ arguments to improve their understanding of a phenomenon or optimization of a design solution.
Strategies
- Some “why” questions that can be asked to help students support their claims:
- What evidence do you have?
- What scientific ideas support your claim?
- Why do you agree or disagree? What are your reasons? What is your evidence?
- What could be some other possible claims? Do you have evidence?
- Do you agree with the points being made? Why?
- Who has a different opinion? What is it? How is it different?
- Why are you using that as evidence and not the other data? How would your claim change if you used all the data?
- How is that idea related to what was previously discussed? What reasons do you have for saying that?
Autonomy is critical for students to be able to engage meaningfully in authentic scientific argumentation to make sense of phenomena or solve design problems. Students need adequate time and opportunity to generate and revise claims, gather evidence, justify their ideas, and evaluate their own arguments against other possibilities. Additionally, providing students with a rationale for why argumentation is a key practice in science and engineering is an important way to support their sense of autonomy in selecting evidence and constructing and evaluating arguments.
Strategies
Argumentation will be most successful in the classroom if students see the relevance of what they are arguing to their own lives. Supports for relevance help teachers to frame arguments within students’ interests, show students the value in a topic they might not otherwise value, and encourage students to connect and apply argumentation skills to understanding phenomena and designing solutions to problems that affect their lives. These relevance connections can be especially important for students who identify with communities that have been marginalized or disenfranchised in science, as it empowers them to apply scientific argumentation to issues that matter to them and their communities [see Motivation as a Tool for Equity]. Additionally, students may already engage in argumentation without consistently using evidence. Seeing that using evidence is an integral part of argumentation for scientists and engineers to achieve key goals (e.g., to find the most thoughtful designs, appropriate analytic techniques, reasonable interpretations, and best solutions to new problems) may encourage students to use evidence more consistently in their arguments.